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1 Introduction

Near-field (NF) antenna measurement techniques have been an indispensable tool for deter-
mining antenna far-field (FF) patterns over many decades [1][2]. NF data are almost always
collected on a planar, cylindrical, or spherical surface mainly to facilitate FF computation.
The cylindrical and spherical scanning techniques are often used to determine FF patterns
over a wide range of directions, while the planar technique is reserved for antennas with
narrow FF patterns. NF techniques have also been explored to determine the bistatic RCS
of a target. Cote and Wing [3] demonstrated that the bistatic RCS can be computed from
spherical NF scan data. More recently, Hansen et al. [4] extended for target scattering the
standard cylindrical NF theory that was originally developed for antennas, while Marr et
al. [5] experimentally demonstrated the feasibility of determining the bistatic RCS from
cylindrical NF data. Cowan and Ryan [6] and Farr et al. [7] applied the planar NF scanning
technique to bistatic scattering from targets, while Zahn and Sarabandi [8] applied it to
bistatic scattering from random rough surfaces.

One significant difference between antenna and target NF measurements is that antennas
are excited by internal sources, while targets are excited by a plane wave that is generated by
a source external to them. In target NF measurements, the NF probe, therefore, cannot be
placed in the region between the target and the transmit dish that generates the plane wave,
as its placement would distort the incident plane wave. Hence, for bistatic RCS applications,
it is not possible to collect scattered NF samples over the entire 4π steradian in the spherical
NF scanning, or over [0, 2π) in the cylindrical scanning. Since only truncated NF samples
are available, computed FF solutions suffer from the angular truncation error; if NF samples
are collected over [φ1, φ2] on a scan surface of radius a, then FF values can be computed
accurately only over [φ3, φ4] where φ3 > φ1 and φ4 < φ2. Hansen et al. [4] showed that the
extent of the truncation error, as determined by Δφ1 ≡ φ3 −φ1 and Δφ2 ≡ φ2 −φ4, depends
on the scan radius.

Antenna FF patterns computed from truncated NF data are subject to similar trunca-
tion errors. With antennas, it is possible, if desired, to completely eliminate the angular
truncation error. With the spherical scanning, radiation patterns in all directions can be
determined, if NF samples are collected at an appropriate sampling rate over the entire
surface of a sphere. Similarly, with the cylindrical scanning, patterns can be determined in
all azimuthal (horizontal) directions over a finite vertical extent, if NF data are collected
over the entire vertical surface of a finite-height, right-circular cylinder. Since FF angular-
truncation errors in spherical and cylindrical scans can be eliminated (albeit at the expense
of substantially increased data collection time), it appears that much of the existing body
of research on truncation-error reduction has been concerned with reducing FF errors that
result when the linear extent of a scan surface is truncated, as occurs in the planar scanning
or the height truncation in the cylindrical scanning [4][10][11][12][13].

In this paper, we consider angular-truncation error reduction for the 2D cylindrical/spherical
NF scanning. After examining the limitations of the traditional multipole-based expansion
of angular-truncated scan data, we consider an alternative expansion based on Slepian func-
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tions [14] and develop a NF-to-FF transformation for the resulting expansion coefficients.
We apply this new NF-to-FF transformation to 2D bistatic scattering from a homogeneous
dielectric circular cylinder and establish that, compared with the traditional multipole-based
NF-to-FF transformation, it significantly reduces the angular-truncation error.

2
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2 Truncation Error in the Traditional NF-to-FF Trans-

formation

In the traditional 2D cylindrical/spherical NF scanning, the scan data, E(a, φ), collected
over a circle of radius, a, is expanded in terms of circular multipoles, Hm(ka)e−imφ, where
Hm(ka) is the mth-order Hankel function of the first kind and k is the wavenumber:

E(a, φ)=
M∑

m=−M

bmHm(ka) e−imφ≡
M∑

m=−M

cm(a) e−imφ (1)

Here, M = int(kao)+No, where int is the integer function, ao is the radius of the minimum
circle that completely encloses the antenna/scatterer, and No is a small integer. If the scan
data is available over the entire interval, [0, 2π), then the expansion coefficients, bm, can be
determined

bm =
1

2πHm(ka)

∫ 2π

0
E(a, φ)eimφdφ, − M ≤ m ≤ M, (2)

and the radiated/scattered field, E(ρ, φ), can be computed anywhere for any ρ > ao and
φ. If the scan data is collected over a limited angular region, [φo, 2π−φo], which is often
the case, it is customary to assume the NF values outside the angular region to be zero and
obtain the expansion coefficient, b̃m, from the truncated NF scan data

b̃m =
1

2πHm(ka)

∫ 2π−φo

φo

E(a, φ)eimφdφ, − M ≤ m ≤ M. (3)

Since bm �= b̃m, the FF, lim
ρ→∞Ẽ(ρ, φ), computed from b̃m is not expected to agree with the

FF, lim
ρ→∞E(ρ, φ), computed from bm over the entire angular region, [0, 2π).

Using (1) and (3), we may identify the angular region where lim
ρ→∞E(ρ, φ) and lim

ρ→∞Ẽ(ρ, φ)

are expected to disagree:

lim
ρ→∞ Ẽ(ρ, φ) = lim

ρ→∞

M∑
m=−M

b̃mHm(kρ)e−imφ

=
1

2π

√
2

πkρ
e−iπ/4eikρ

∫ 2π−φo

φo

TM(a, φ−φ′) E(a, φ′)dφ′ (4)

Here, TM(a, φ−φ′)≡
M∑

m=−M

eim(φ−φ′−π/2)/Hm(ka), which is referred to as the taper function in

[4], determines the angular extent of NF scan data E(a, φ′) that is required to compute the
FF, lim

ρ→∞Ẽ(ρ, φ). Figure 1 plots normalized |TM(a, φ− φ′)| as a function of φ−φ′ for various

values of scan radius, a and M = 90. For a = 1000λ, |TM(a, φ − φ′)| is sharply peaked at
φ = φ′. However, as a gets smaller, |TM(a, φ−φ′)| develops a broad plateau around φ = φ′.
Thus, as a gets smaller, more extended NF scan data around φ = φ′ is needed to compute

3
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Figure 1: Normalized taper function |TM (a, φ − φ′)| for various values of scan radius, a and M=90.

lim
ρ→∞Ẽ(ρ, φ). This behavior of |TM(a, φ−φ′)| for small a is responsible for the truncation error

in the FF. Even though the width of the plateau near φ = φ′ decreases as a increases, thus
reducing the FF truncation error, it generally takes longer to collect NF data at a larger scan
radius (The number of required NF samples is independent of a. However, the NF probe
must traverse longer distances at large a) .
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3 Alternative Expansion of NF Scan Data

We may observe that the fundamental reason for the FF truncation error is that the multipole
field, Hm(ka)e−imφ, that is used to expand the NF scan data, fails to be orthogonal over
[φo, 2π−φo], leading to bm(a) �= b̃m(a). Therefore, we may seek an alternative expansion of
the scan data in terms of a basis function set that is orthogonal over [φo, 2π−φo]. It is well
known that the radiated/scattered field is spatially band-limited [9]. Stated in the context
of (1), it is index-limited, i.e., cm(a) = 0 for |m| >> M . When the expansion coefficients,
cm(a), are Fourier-transformed to angular domain, using (1), to obtain the radiated/scattered
field, the resulting field is not angle-limited, i.e., |E(a, φ)| > 0, 0 ≤ φ < 2π, thus making
it difficult to find a basis function set that is orthogonal over [φo, 2π−φo] and satisfies the
Helmholtz equation.

It is possible to find a basis function set that results in the maximum concentration of
”energy” in a given truncated angular domain. Following [14], we define

S(a, φo) ≡ 1

2π

∫ 2π−φo

φo

E∗(a, φ) E(a, φ) dφ, (5)

and seek a basis function set for E(a, φ) that maximizes S(a, φo) for given φo. Using (1),

S(a, φo) =
∑
m

c∗m(a)
∑
m′

Km,m′(φo) cm′(a) ≡ C
+ · K · C > 0, (6)

where C is the column vector containing the 2M + 1 values of cm(a); C
+
, its hermitian

conjugate; and K, the (2M + 1) x (2M + 1) real, symmetric, Toeplitz matrix with

Km,m′ ≡ 1

2π

∫ 2π−φo

φo

ei(m−m′)φdφ = −φo

π
sinc (m − m′)φo, (7)

−M ≤ m, m′ ≤ M , and sinc(x) ≡ sin(x)/x. Since S(a, φo) is always positive, K is a positive-

definite matrix [14]. Let vn and λn be the nth eigenfunction and eigenvalue of K so that

K · vn = λn vn, n = 1, ... , 2M+1. Or

K · V = V · Λ, (8)

where V ≡ [v1 v2 v3 ... v2M−1 v2M v2M+1] and Λ is the diagonal matrix with Λn,n = λn,

n = 1, ... , 2M+1. Since K is positive-definite, V is a real matrix with V
−1

= V
T

where V
T

is the transpose of V , and λn is real with 1 > λ1 > λ2 > ... > λ2M > λ2M+1 > 0 [14].
We may use vn to construct an expansion function set that is orthogonal over [φo, 2π−φo].

We define

sn(φ) ≡ 1√
2π

M∑
m=−M

vn(m) e−imφ, n = 1, ...., 2M+1 (9)

5
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where vn(m) is the mth element of vn. sn(φ) is commonly called the prolate spheroidal wave
function, or Slepian function [14]. It satisfies [14]

∫ 2π−φo

φo

s∗n(φ) sn′(φ)dφ = λnδn,n′ (10)

and ∫ 2π

0
s∗n(φ) sn′(φ)dφ = δn,n′ (11)

According to (10), the eigenvalue, λn, physically corresponds to the concentration of sn(φ)
over [φo, 2π − φo] [14].

Plotted in Figure 2.A is the distribution of eigenvalues corresponding to M = 90 and
φo = 30o, where we have introduced a floor of -156 dB to avoid having to compute the
logarithm of 0. If the sn(φ) are chosen to maximize

∫ φo

−φo
E(a, φ)E∗(a, φ)dφ, then there are

approximately 2Mφo/π eigenvalues that are close to 1 [14]. Since we have instead chosen the
sn(φ) to maximize

∫ 2π−φo

φo
E(a, φ)E∗(a, φ)dφ, we expect approximately 2M(1 − φo/π) = 150

eigenvalues close to 1, as shown in the figure. Figure 2.B shows the orthogonality of the
sn(φ).
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Since the sn(φ) are orthogonal over [φo, 2π−φo], we may use them to expand the NF
scan data, E(a, φ):

E(a, φ) =
P∑

n=1

dn(a) sn(φ) ≡ d
T
(a) · s(φ) (12)

where P ≤ 2M + 1; d(a) and s(φ) are the column vectors of length P containing the dn(a)
and sn(φ) values, respectively. Using (10), the expansion coefficients, d(a), can be obtained
from the truncated NF scan data:

dn(a) =
1

λn

∫ 2π−φo

φo

E(a, φ) s∗n(φ) dφ, n = 1, ... , P. (13)

Since λn → 0+ as n → 2M+1, P is chosen so that λP ≥ ε, where ε is a small positive number.
We note that dn(a) can be expressed in terms of the multipole-expansion coefficients, bm.
Substituting (1) and (9) into (13), and using (8),

d(a) =
√

2π V
T

P · H(ka) · b (14)

where d(a) and b are the column vectors containing the P values of dn(a) and 2M +1 values

of bm, respectively; V P is the (2M + 1) x P matrix obtained by taking the first P columns

of V ; and H(ka) is the (2M + 1) x (2M + 1) diagonal matrix whose diagonal elements are
Hm(ka) with −M ≤ m ≤ M . With P = 2M + 1 in (14), it is evident that dn(a) remains
finite for all n, in spite of λn → 0+ as n → 2M+1.

Substitution of (14) into (12) yields

E(a, φ) =
∑
m

bmHm(ka)
∑
m′

[QP ]m,m′ e−im′φ (15)

where [QP ]m,m′ ≡
P∑

n=1

vn(m) vn(m′). We note that if P = 2M +1, [QP ]m,m′ = δm,m′ , and thus

(12) satisfies the 2D Helmholtz equation rigorously. If P < 2M + 1, then [QP ]m,m′ �= δm,m′ ,
but has a strong diagonal dominance as shown in Figure 3 for P = 156 and 166 for the sn(φ)
considered above. Therefore, when P < 2M + 1, (12) satisfies the 2D Helmholtz equation
only approximately.

7
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Figure 3: Diagonal dominance of 10 log10 |QP | for P = 156 and 166.
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4 Transformation of the Expansion Coefficients, dn(a)

In order to obtain FF from the NF representation, (12), we define the operator, T(ρ, a), that
propagates the scan data, E(a, φ), to the field at (ρ, φ):

E(ρ, φ) ≡ T(ρ, a) · E(a, φ) =
P∑

n=1

[T(ρ, a) dn(a)] sn(φ)

≡
P∑

n=1

dn(ρ) sn(φ) ≡ d
T
(ρ) · s(φ) (16)

Using V
T

P · V P = IP , where IP is the identity matrix of order P , we establish that V P is the

pseudo-inverse of V
T

P [15] and obtain the least-square solution of (14),

bLS =
1√
2π

H
−1

(ka) · V P · d(a). (17)

Substitution of the above equation into (14) yields

d(ρ) = T (ρ, a) · d(a) =
[
V

T

P · H(ρ, a) · V P

]
· d(a), (18)

where T (ρ, a) is the matrix representation of T(ρ, a); and H(ρ, a) is the (2M +1)x(2M +
1) diagonal matrix whose diagonal elements are Hm(kρ)/Hm(ka), −M ≤ m ≤ M . The
FF expansion coefficients, lim

ρ→∞dn(ρ), are then obtained by substituting the large-argument

expression for Hm(kρ), or

lim
ρ→∞d(ρ) =

√
2

πkρ
e−iπ/4eikρ

[
V

T

P · G∞(a) · V P

]
· d(a), (19)

where G∞(a) is the (2M+1)x(2M+1) diagonal matrix whose diagonal elements are e−imπ/2/Hm(ka),

−M ≤ m≤ M . We note that as the scan radius, a, approaches infinity, lim
ρ,a→∞H(ρ, a) = I2M+1,

where I2M+1 is the identity matrix of order 2M + 1. Since V
T

P · V P = IP , we have
lim
a→∞d(a) = lim

ρ→∞d(ρ) and consequently lim
a→∞E(a, φ) = lim

ρ→∞E(ρ, φ), satisfying the basic physi-

cal requirement that the scan data collected at a = ∞ correspond to the FF.
In the traditional 2D NF-to-FF transformation based on (3), both the the expansion

coefficients, b̃m, and the FF can be computed using O(M log2 M) floating-point operations
(FPOs) by taking advantage of the Fast Fourier Transformation (FFT). The new NF-to-

FF transformation algorithm, however, requires the eigen-decomposition of K, which re-
quires O(M3) FPOs. Thus, from the purely computational efficiency point of view, the new
NF-to-FF transformation algorithm is less attractive than the traditional multipole-based
algorithm.

9
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5 Numerical Examples

We apply the new NF-to-FF transformation to the 2D bistatic scattering scenario shown in
Fig. 4. A plane wave of wavelength, λ, propagates to the left and is scattered by a circular
cylinder of radius ao = 10λ and dielectric constant 1.6. The incident electric field is polarized
perpendicular to the cylinder axis. The exact bistatic near and far fields can be computed
using (1) with the expansion coefficients, bm, given in [16] with M = 90. To compute far
fields from near fields, we sample the scattered NF, E(a, φ), using an ideal probe on the
concentric cylinder of radius a=25λ from φ=30o to φ=330o with increments of Δφ=0.5o,
which is about one fourth of the Nyquist sampling interval, Δφ = π/(M +1) [1][2]. We
compute two sets of FF values from the NF samples using (3) and (19), respectively. (3) is
approximated by

b̃m ≈ Δφ

2πHm(ka)

J∑
j=1

E(a, φj)e
imφj , − M ≤ m ≤ M,

where J is the number of NF samples and the summation over j can be evaluated efficiently

using FFT. To compute the FF using (19), we first construct the 181x181 K matrix taking
advantage of its symmetric Toeplitz structure. Since the integral in (13) needs to be evaluated

numerically, the matrix element, Km,m′ , is also evaluated numerically using the Trapezoidal
rule rather than using the analytic expression given in (7). We then compute the eigenvalues,
λn, and eigenvectors vn, n = 1, ... , 181. The resulting λn distribution, as shown in Fig. 2.A,
contains P =165 non-negligible eigenvalues with λn > 10−14. Thus, we compute the Slepian
functions, sn(φ), and the coefficients, dn(a), for n = 1, ..., 165 to expand the NF scan data.
The FF expansion coefficients, lim

ρ→∞dn(ρ), and FF values, lim
ρ→∞E(ρ, φ), are obtained using

(19) and (16), respectively.
The three sets of normalized FF solutions are plotted in Fig. 5 as a function of bistatic

angle. As expected from the behavior of the taper function, T (a, φ − φ′), the FF solution
computed using the traditional NF-to-FF transformation deviates from the reference solu-
tion for 30o ≤ φ ≤ 62o. In contrast, the FF solution computed using the new NF-to-FF
transformation diverges from the reference solution only for 30o ≤ φ ≤ 33o, demonstrating
that the new NF-to-FF transformation significantly reduces the error in the computed FF.

10
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Figure 4: 2D NF scanning for bistatic scattering applications.

It is well known that the performance of many numerical techniques that take advantage
of the eigen-structure of a matrix depends on signal-to-noise ratios (SNR). One significant
advantage of NF measurements is that it is possible to achieve a high SNR [2]; SNRs of 40
to 60 dB are routinely achieved [17]. In order to investigate the dependence of performance
on SNR, we introduce noise to the exact NF scan data, Eo(a, φj):

E(a, φj) = Eo(a, φj) + Nj, j = 1, ... , J

where Nj is modeled as a complex, zero-mean, Gaussian random process. Compared in Fig.
6 are the two normalized FF solutions computed, respectively, using the new and traditional
NF-to-FF algorithms for the scattering problem of Fig. 4 with SNR=43 dB. The figure shows
that the addition of noise degrades the performance of the new algorithm more significantly
than that of the traditional algorithm; the solution generated with the new algorithm now
agrees with the reference solution over φ>45o, while the noise-free solution shown in Figure
5 agrees with the reference solution φ>33o. Even with its higher sensitivity to noise, the new
NF-to-FF algorithm still produces the FF solution that agrees with the reference solution
over a wider range of bistatic angle.

If we let E(ρ) and E(a) be the column vectors containing the J values of E(ρ, φ) and
E(a, φ), respectively, the traditional algorithm, (3), may be expressed in matrix form as

E(ρ) ≡ τ tr(ρ, a) · E(a) =
Δφ

2π
F

T
H(ρ, a) F

∗ · E(a), (20)

and the new algorithm, (16), as

E(ρ) ≡ τnew(ρ, a) · E(a) =
Δφ

2π
F

T
QP H(ρ, a) UP F

∗ · E(a). (21)
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Figure 5: FF solutions computed from NF scan data. Top figure: Normalized FF as a function of bistatic
angle. Bottom figure: Same as the top figure except that the FF solutions are plotted from 30 to 80o.
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Figure 6: FF solutions generated from NF scan data with SNR=43dB.
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Figure 7: Comparison of the transformation matrices: (A) 10 log10 |τ tr|, (B) 10 log10 |τnew| with P=156
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Here, F denotes the Fourier transformation matrix of (9) and QP ≡ V P V
T

P , and UP ≡
V P Λ

−1

P V
T

P , where Λ
−1

P is the diagonal matrix of order P with [Λ
−1

P ]n,n = 1/λn. One may use
(21) to compute the E(ρ) without explicitly constructing the sn(φ). Figure 7 compares the
two ”transformation matrices” for the NF scan scenario considered above with ρ = 2.5x107λ.
The τ tr is Toeplitz, as required by (4). The τnew is plotted for P =156. For 60o <φ<300o,
the τ tr and τnew behave quite similarly. Outside this angular region, where the angular
truncation error is of concern, the τnew attempts to ”collect maximum information” from
all available E(a, φ′) to construct the E(ρ, φ). It is to be noted that the τnew shows a high

sensitivity to P for φ<60o and φ>300o due to the presence of Λ
−1

P through UP in (21). This
explains the higher noise sensitivity of the FF solution obtained using the new algorithm.
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6 Conclusion

We have introduced a new NF-to-FF transformation algorithm for the 2D cylindrical/spherical
NF scanning. Compared with the traditional multipole-expansion-based algorithm, this new
algorithm significantly reduces the error in the FF solution that results when NF data is
truncated, albeit at a higher computational cost. Even though we were primarily motivated
by bistatic RCS applications, the new algorithm, when fully extended to 3D, can be used to
reduce the required scan area in cylindrical and spherical antenna NF measurements, thereby
making these measurements more cost-effective.
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Acronyms 

NF Near Field

FF Far Field

RCS Radar Cross Section
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